# Books written by Jean-Pierre Serre.

Serre received the Fields Medal in 1954 for having achieved major results on the homotopy groups of spheres, especially in his use of the method of spectral sequences and reformulating and extending some of the main results of complex variable theory in terms of sheaves. He was awarded the Abel Prize in 2003 for playing a key role in shaping the modern form of many parts of mathematics, including topology, algebraic geometry and number theory.

## Grothendieck-Serre Correspondence (English and French Edition)

This extraordinary volume contains a large part of the mathematical correspondence between A. Grothendieck and J-P. Serre. It forms a vivid introduction to the development of algebraic geometry during the years 1955-1965. During this period, algebraic geometry went through a remarkable transformation

## Oeuvres - Collected Papers I: 1949 - 1959

As listed in the preface, the three volumes cover almost all articles published in mathematical journals between 1949 and 1984, the summaries of the author's courses at the Collège de France since 1956, some of his Séminaire notes, and some items not previously published.

## Oeuvres - Collected Papers II: 1960-1971

As listed in the preface, the three volumes cover almost all articles published in mathematical journals between 1949 and 1984, the summaries of the author's courses at the Collège de France since 1956, some of his Séminaire notes, and some items not previously published.

## Oeuvres - Collected Papers III: 1972 - 1984

Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results.

## Oeuvres - Collected Papers IV: 1985 - 1998

This is the fourth volume of J-P. Serre's Collected Papers covering the period 1985-1998. Items, numbered 133-173, contain "the essence" of his work from that period and are devoted to number theory, algebraic geometry, and group theory. Half of them are articles and another half are summaries of his courses in those years and letters. Most courses have never been previously published, nor proofs of the announced results.

## Algebraic Groups and Class Fields

## Local Fields

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field.

## Local Algebra

This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities.

## Trees

The seminal ideas of this book played a key role in the development of group theory since the 70s. Several generations of mathematicians learned geometric ideas in group theory from this book. In it, the author proves the fundamental theorem for the special cases of free groups and tree products before dealing with the proof of the general case.

## Finite Groups: An Introduction

This book is a short introduction to the subject, written both for beginners and for mathematicians at large. There are ten chapters: Preliminaries, Sylow theory, Solvable groups and nilpotent groups, Group extensions, Hall subgroups, Frobenius groups, Transfer, Characters, Finite subgroups of GLn, and Small groups.

## Linear Representations of Finite Groups

This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.

## Lie Algebras and Lie Groups

The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I. I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups.

## Abelian l-Adic Representations and Elliptic Curves

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem.

## Complex Semisimple Lie Algebras

These short notes, already well-known in their original French edition, present the basic theory of semisimple Lie algebras over the complex numbers. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras.

## Cohomological Invariants in Galois Cohomology

This volume addresses algebraic invariants that occur in the confluence of several important areas of mathematics, including number theory, algebra, and arithmetic algebraic geometry. The invariants are analogues for Galois cohomology of the characteristic classes of topology, which have been extremely useful tools in both topology and geometry.

## Topics in Galois Theory: Research Notes in Mathematics

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group.

## Galois Cohomology

This is an updated English translation of Cohomologie Galoisienne, published more than thirty years ago as one of the very first versions of Lecture Notes in Mathematics. It includes a reproduction of an influential paper by R. Steinberg, together with some new material and an expanded bibliography.

## Lectures on the Mordell-Weil Theorem

The book is based on a course given by J.-P. Serre at the Collège de France in 1980 and 1981. Basic techniques in Diophantine geometry are covered, such as heights, the Mordell-Weil theorem, Siegel's and Baker's theorems, Hilbert's irreducibility theorem, and the large sieve.

## Prospects in Mathematics

Five papers by distinguished American and European mathematicians describe some current trends in mathematics in the perspective of the recent past and in terms of expectations for the future.